KENDRIYA VIDYALAYA, EMBASSY OF INDIA, KATHMANDU, NEPAL

SAMPLE PAPER 04 FOR PERIODIC TEST 02 (2025-26)

(Quadratic Equations, AP, Triangles and Coordinate Geometry)

SUBJECT: MATHEMATICS MAX. MARKS: 40 CLASS: X DURATION: 1½ hrs

General Instructions:

- (i). **All** questions are compulsory.
- This question paper contains 20 questions divided into five Sections A, B, C, D and E.
- (iii). Section A comprises of 10 MCOs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.
- (iv). There is no overall choice.
- Use of Calculators is not permitted

SECTION - A

Questions 1 to 10 carry 1 mark each.

1. The coordinate of point P on X-axis equidistant from the points A (-1, 0) and B (5, 0) is

(a) (2, 0)

(b) (0, 2)

(c)(3,0)

(d)(2,2)

2. The value of k for which the equation $x^2 + 2(k+1)x + k^2 = 0$ has equal roots is

(a) - 1

(b) $-\frac{1}{2}$

(c) 1

(d) none of these

3. In the figure given below, two line segments AC and BD intersect each other at the point P such that PA = 6 cm, PB = 3 cm, PC = 2.5 cm, PD = 5 cm, $\angle APB = 50^{\circ}$ and $\angle CDP = 30^{\circ}$. Then, ∠PBA is equal to:

(a) 50°

4. Which of the following equations has two distinct real roots?

(a) $2x^2 - 3\sqrt{2}x + \frac{9}{4} = 0$ (b) $x^2 + x - 5 = 0$ (c) $x^2 + 3x + 2\sqrt{2} = 0$ (d) $5x^2 - 3x + 1 = 0$

- 5. The 21st term of the AP whose first two terms are -3 and 4 is

(a) 17

(b) 137

(c) 143

(d) -143

6. If (a, b) is the mid point of the line segment joining the points A (10, -6) and B (k, 4) and a - 2b= 18, the values of k is

(a) 30

(b) 22

(c) 4

(d) 40

7. The common difference of an A.P., whose *n*th term is $a_n = (3n + 7)$, is:

(a) 3

(b) 7

(c) 10

(d) 6

8. In the following figure, ST \parallel QR, point S divides PQ in the ratio 4 : 5. If ST = 1.6 cm, what is the length of QR?

(a) 0.71 cm

(b) 2 cm

(c) 3.6 cm

(d) cannot be calculated from the given data.

In the following questions 9 and 10, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- **9.** Assertion (A): The roots of the quadratic equation $x^2 + 2x + 2 = 0$ are imaginary **Reason (R):** If discriminant $D = b^2 - 4ac < 0$ then the roots of quadratic equation $ax^2 + bx + c = 0$ 0 are imaginary.
- 10. Assertion (A): If the second term of an A.P., is 13 and the fifth term is 25, then its 7th term is

Reason (R): If the common difference of an A.P. is 5, then $a_{18} - a_{13}$ is 25.

 $\frac{SECTION - B}{\text{Questions 11 to 14 carry 2 marks each.}}$

- 11. Find the values of y for which the distance between the points P(2, -3) and Q(10, y) is 10 units.
- 12. Find the values of k for which quadratic equations kx(x-2) + 6 = 0 has two equal roots.
- **13.** In the below figure, if \triangle ABE \cong \triangle ACD, show that \triangle ADE \sim \triangle ABC.

14. Find the roots of the equation $5x^2 - 3x - 2 = 0$

<u>SECTION – C</u>

Questions 15 to 17 carry 3 marks each.

- 15. A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train.
- **16.** If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289, find the sum of first n terms.
- 17. In the below figure, ABC and AMP are two right triangles, right angled at B and M respectively. Prove that: (i) \triangle ABC \sim \triangle AMP (ii) CA/PA = BC/MP

18. Prove that "If a line is drawn parallel to one side of a triangle, the other two sides are divided in the same ratio."

<u>SECTION – E (Case Study Based Questions)</u>

Questions 19 to 20 carry 4 marks each.

19. Aditya, Ritesh and Damodar are fast friend since childhood. They always want to sit in a row in the classroom. But teacher doesn't allow them and rotate the seats row-wise everyday. Ritesh is very good in maths and he does distance calculation everyday. He consider the centre of class as origin and marks their position on a paper in a co-ordinate system. One day Ritesh make the following diagram of their seating position marked Aditya as A, Ritesh as B and Damodar as C.

- (i) What is the distance between A and B? [1]
- (ii) What is the distance between B and C? [1]
- (iii) A point D lies on the line segment between points A and B such that AD :DB = 4:3 . What are the the coordinates of point D ? [2]

- (iii) If the point P(k, 0) divides the line segment joining the points A(2, -2) and B(-7, 4) in the ratio 1:2, then find the value of k[2]
- **20.** A school auditorium has to be constructed with a capacity of 2000 people. The chairs in the auditorium are arranged in a concave shape facing towards the stage in such a way that each succeeding row has 5 seats more than the previous one.
 - (a) If the first row has 15 seats, then how many seats will be there in 12th row?
 - (b) If there are 15 rows in the auditorium, then how many seats will be there in the middle row?
 - (c) If total 1875 guests were there in the auditorium for a particular event, then how many rows will be needed to make all of them sit?

OR

(c) If total 1250 guests were there in the auditorium for a particular event, then how many rows will be left blank out of total 30 rows?

